
1

Accessibility begins in 
planning: how to develop 
accessible websites

Online Conference by Cédric Anderson
(Laboratoire NT2)
June 10, 2020

This conference is part of Interrogating Access, a series of talks and 
workshops on accessibility in art and media production developed by 
OBORO and Spectrum Productions with the support of the Canada Council 
for the Arts. OBORO and Spectrum Productions acknowledge that their 
activities take place in Tiohtià:ke, an unceded Kanien’kehá:ka territory.

(Beginning of transcription)

Hello. My name is Cédric Anderson, and today I’ll talk about website 
accessibility in Quebec. Before we begin, I’d like to thank OBORO for 
inviting me. I hope you’ll enjoy the presentation today.

On the agenda: 

•	 We’ll look at who I am and what I do.
•	 We’ll take a look at website accessibility in Quebec. 
•	 WCAG 2.0, which is the protocol we use in Canada. 
•	 WAI-ARIA, which supports HTML tags. 
•	 Accessible HTML. 
•	 Online tools that you can use to check whether a website is accessible. 
•	 Website accessibility in various scenarios.



2

I’ve been working with websites since 2003. I work as a full-stack developer, 
so I deal with the visible and background aspects when we’re building a 
website. I work mainly for public and private institutions, small businesses, 
artists and self-employed individuals. I work with WordPress a lot of the 
time. I build custom themes for the WordPress platform. I also work at 
UQAM, at the NT2, which is a research lab in digital arts and literature.

Here is the definition of accessibility for the Web:

“A service or content provided over the Internet is considered accessible 
when any person, whatever their disability, can understand, browse 
through, and interact with it. Web accessibility is an important factor for 
social integration and community participation.”

There’s a reference at the bottom of the slide if you’d like to access the 
government website.

In Quebec, as we speak, very few organizations have to follow accessibility 
standards, aside from the government itself. Colleges and universities have 
to, but for the most part, only government organizations and ministries have 
to be accessible. These two slides with links at the bottom explain who has 
to apply accessibility standards. If you’re an artist, an arts centre, a small 
business or a non-profit, you don’t have to provide an accessible website.

WCAG 2.0 is a rule book that can be used to ensure that a website will be 
accessible by most people. There are many, many standards. It’s a very 
large document. But we can sum it up in four points: a website has to be 
perceivable, operable, understandable, and robust. You’ll find a link at the 
end of this document for an in-depth explanation of WCAG.

WAI-ARIA is a series of properties you can add to HTML tags to give the 
content some context. When building a website and creating a content box, 
developers can only say, “this is a box.” But it’s hard to define exactly what 
the content is. WAI-ARIA provides a series of HTML properties that can be 
used to specify the contents of each box used in a website. For example: 
“This is the opening hours” or “That’s navigation.” So with WAI-ARIA you 
can define roles, properties, statuses. ARIA properties should only be used 
when absolutely necessary. There are HTML tags that are called semantic 



3

elements. On their own, they can give a general idea of what the contents 
are. For example, you have the tags: NAV, ARTICLE, FOOTER. These 
semantic elements should be used before applying WAI-ARIA rules.

Let’s take a look at the tools we can use to create an accessible website. 
The first thing is the semantic elements I mentioned. They can give context 
to the content. They also help with keyboard navigation. For people who 
have a motor disability or use a screen reader, it’s much easier to navigate 
without using a mouse, only with a keyboard. 

It’s also much simpler for developers. When creating a website, using 
semantic elements is very simple. It’s also simple for responsive sites, 
which work equally well on a computer screen or a mobile screen. And it 
helps optimization for search engines. Google loves semantic websites, and 
will provide better search ratings when the right elements are used.

For text, although there’s no fixed rule, it’s best to follow logic. The 
language should be clear, for example, using “without” and not “w/o” with 
a slash, which doesn’t mean anything for a screen reader. Abbreviations 
should be avoided, and if they’re used, the ABBR tag should be used, which 
is the “abbreviation” tag. 

A sufficient font size should be used, the minimum size being 16 pixels. 
Under 16 pixels, the text is very small. For low-vision users, it can be 
difficult. Text colour should be highly visible in contrast with the background 
colour. For example, this presentation uses white text of a dark grey 
background, which is easy to read. However, the blue letters used for the 
title may be harder to read for some.

Using the right tags. I often see developers using incorrect tags. The right 
tags should always be used. For example, for a page header, H1, H2, and 
H3 should be used instead of the paragraph tag. Also, HTML attributes 
shouldn’t be used for design. It’s really a question of separating visuals and 
content—contents are handled with HTML, and visuals by CSS.

For hyperlinks, the link text should be short, simple, clear and descriptive. 
For example, a link that says “Click Here” doesn’t mean anything out of 
context. It should read instead, for example, “To buy a ticket, please click 
here.” Using complete sentences for links is absolutely fine.



4

When possible, avoid using the same text for different links. For those of 
you who don’t know about screen readers, they’re used mainly by blind 
and low-vision users. The screen reader is a voice that reads what’s on 
the page, line after line. You can imagine that if you have five “Click Here” 
buttons on a page, it’ll be hard to figure out which does what. So different 
text should be used for each link of the page.

Use the TITLE attribute whenever possible. The Title attribute is used for 
images and links. It’s not visible for screen readers, so shouldn’t contain 
important text. The Title attribute is the text that pops up when you hover 
over a link with the mouse. Make sure to use a description to specify where 
the link goes.

When you add a link to a file, specify its size and use the DOWNLOAD 
attribute. There’s an attribute in HTML called “download,” and it should be 
used. You should also add, if possible, the size of the downloadable file. It’ll 
help the user decide if they have the necessary resources.

Don’t repeat the URL in the link text. For example, if you have a link to 
google.com, don’t use “www.google.com” as the text. Instead, use: “Click 
here to access the Google search engine.” 

When the link opens in a new tab, mention it. Screen readers don’t alert the 
user that a new tab has been opened. So it’s useful to mention in the link 
that it will open in a new tab.

And use “skip links.” It’s important, we’ll talk about it later.

TABINDEX: when someone is using the keyboard to navigate the site, 
they’ll use the Tab key a lot. It’s the key that moves the selection from one 
item to the next on a web page, and is used far more than the arrow keys.
The tabindex can be used to change the default navigation flow in a page. 
Imagine the navigation in the top menu of a page. When you hover on 
“About,” a submenu pops up. Let’s say the default navigation flow when I 
press Tab is: Home > About > Products > Services > Contact, for example, 
but when the user gets to “About,” instead of going to the next item, I want 
them to access the submenu. I can change this in the tabindex. With this 
change, when the user presses on Tab, the flow will now be Home > About 



5

> The Team > The Company > Products > Services > Contact, etc.

The tabindex can make an item accessible with keyboard navigation. 
Normally, when I press the Tab key, mainly links will be selected. If I press 
Tab, it will go through the navigation. At the end, it’ll bring me to the first 
link on the page, etc. But sometimes, you may want the user to access an 
item on the page, and you can do that by setting the tabindex at 0. So the 
section I coded as tabindex="0" will be visible for the tabindex. I can also 
do the opposite, and make an item unavailable for keyboard navigation, by 
setting the tabindex at -1.

For images: Always use the ALT attribute. If you use the IMG tag, writing 
IMG (space) ALT should become automatic. The ALT attribute contains the 
alternate text for an image. It’s a short description of what the image is. 
So, for example: “Traffic sign indicating a left turn.” Or it could be: “Artwork: 
Painting, oil on canvas,” etc. So, it’s one sentence or two short sentences 
that convey what the image contains.

For decorative images, leave the ALT attribute blank. These are all the 
images that aren’t useful for the content, and have a purely aesthetic 
function. You should still use the ALT attribute, but leave it blank. That way, 
screen readers will skip them.

The Title attribute for help bubbles—I mentioned this earlier.

Use the LONGDESC attribute (meaning “long description”) when including 
diagrams or complex images. However, note that these are not read by 
all screen readers, though most can. Long descriptions are used when a 
diagram is used to illustrate statistics, for example, or pie charts. These are 
hard to describe well in just one sentence. With a single sentence in the 
ALT attribute, you’ll have something like “Statistical Diagram of Visitors on 
the Site in 2019,” for example. This doesn’t read what the statistics are for 
a blind person. Using the long description attribute will enable you to add a 
link to a longer description. When the user accesses this long description, 
it should be a complete description explaining that 10% is attributed to one 
thing, 25% to another, etc. in our statistics example.

Use descriptive file names: If I have a .JPEG image, for example. Some 
screen readers can read file names. So it’s a good idea to use file names 



6

that are descriptive, instead of just using “img001.jpeg,” for example.

If the image description is in a side paragraph, use the ARIA-LABELEDBY 
attribute. I mentioned ARIA earlier. As an example, this is an attribute 
that enables you to indicate that a paragraph next to the image is used to 
describe that image.

You should also use the tags FIGURE and FIG CAPTION, which are 
semantic elements that say: this figure contains an image, a description, 
a paragraph and an MP3, for example. This can be used to group several 
elements that are part of the image.

Forms: They should be simple, clear, and logical. You can sometimes see 
forms on several pages: Section 1, Section 2, Section 3 … with a “Next” 
button on each page. It’s already frustrating for someone who doesn’t have 
a visual disability. Imagine what it’s like for someone who uses a screen 
reader.

Ensure that forms work with keyboard navigation by using the tabindex. 
Forms are a great example for the tabindex that I was explaining earlier. 
If I design a form on two columns, normally the Tab function will go down 
the left column first, then down the right column. But maybe I’d like for the 
navigation to go line by line: left-right, left-right, left-right. I’ll be able to set 
that up with the tabindex.

Using the LABEL, or ARIA-LABEL attributes: Another mistake that’s 
common on websites is when someone doesn’t like to have the field name 
right above the field. They prefer placing the field name inside the field. By 
default, you have to use a placeholder in the INPUT tag, but the placeholder 
isn’t read by screen readers. So the Label attribute should be used for each 
field. You can use Float Label instead if you want to be able to move it, and 
place it inside the field, for example.

Use ARIA-DESCRIBEDBY for long explanations: If I have a complicated 
form with a long explanation, I’ll use the aria-describedby property to make 
it clear that this is the description of the form. 

Also, errors should be kept in context: Another common mistake is when 
the user forgets to input their email address in a form, or types it incorrectly, 



7

some forms will bring the user back to the top of the page where all the 
error messages are grouped together. This shouldn’t happen. Errors should 
be written in at each field. So if I forget to type in my email address, the 
error should appear next to that field.

Tables: Use the TH tags and the SCOPE attribute for headers. I rarely see 
these elements used. They’re used to define the function of the first column, 
the second column, etc. They give some context for lines and columns in 
a table. Use THEAD, TBODY and TFOOTER: These don’t help screen 
readers, but help to keep items in context, like I just explained.

More notes on HTML elements:

Items hidden with VISIBILITY: HIDDEN or DISPLAY: NONE aren’t visible 
for screen readers. Use positioning with Z-INDEX instead. One of the 
things that visibility: hidden is often used for is accordions. If I have an 
accordion on a page and I click the arrow, it’ll hide the previous item and 
display the next item. Often the visibility: hidden property will be used. This 
is a problem, as the content won’t be seen by screen readers. Instead, a 
z-index or another method should be used. Content shouldn’t be hidden if 
that content is relevant, for users with a visual disability.

Same with a canvas: if you have a highly dynamic site with a lot of 
animations, often a canvas will be used. It should be referenced via 
JavaScript, or with ARIA to ensure that there is at least a text explaining to 
users with a visual disability what is supposed to happen on this canvas.

Use the BUTTON tag. Don’t use the DIV tag to create buttons. This is, 
again, to ensure that contents are in the correct context and that semantic 
HTML is used. A DIV box can contain anything and shouldn’t be used 
instead of a Button tag, where the name says it—it’s a button, an interactive 
item.

There should be an adequate contrast between the foreground and the 
background. A pale blue title on a dark blue background will make it hard to 
read for a large number of people with vision issues. 

Don’t place important content in JavaScript. Same thing for screen readers. 
A JavaScript script normally shouldn’t contain text. It should be available to 



8

everyone, so ensure to keep text in HTML elements.

Here I have three online tools: The first is a website that can be used to 
check the colour contrast between the foreground and the background. The 
next two are extensions that can be used to check the colour contrast and 
a number of other items, for example whether images all have their ALT 
properties. I specified the Firefox extension and the Chrome extension. I 
don’t use Safari—I searched for it, but didn’t find anything. I recommend 
using one of those two browsers if you want to check a website’s 
accessibility.

Scenarios: What is an accessible website…
 
For users on the autistic spectrum: 

Use simple colours, plain language, short sentences, bullet lists, descriptive 
buttons, and simple and consistent layouts. User experience should be as 
simple and clear as possible. This is the most important aspect.

For screen readers, and for blind and low-vision users: 

Describe images and provide transcripts for videos—I know that video 
transcripts and subtitles can be a problem in some cases, but if you want 
to ensure that a website is 100% accessible, videos should be subtitled. 
Follow a linear, logical layout—for example, this means that forms on two 
columns should be easy to navigate using the Tab key. Use semantic 
elements, keyboard navigation only and descriptive links and headings. We 
looked at these items previously.

For users with low vision and other visual impairments, including colour 
blindness:

Use good colour contrasts and a readable font size. Publish all information 
on the web page (not in images, videos or PDF files)—the contents of 
a web page should never be in a PDF file; you can convert the PDF 
content to HTML and add a link to that PDF. Use a logical combination of 
colours, shapes and text. Follow a linear, logical layout. Keep buttons and 
notifications in context—don’t place form error messages at the top of the 
page, for example, as I explained earlier.



9

For users with dyslexia: 

Use images and diagrams to support text. Align text to the left and keep a 
consistent layout—complex visuals may be fun, but with dyslexia, they’re 
not helpful. Consider producing materials in other formats—if someone 
finds reading difficult, a video, a podcast or an audio recording can help. 
Keep content short, clear and simple. Let users change the colours of the 
background and foreground—if you use WordPress, there are a number of 
plug-ins that let the user change the site interface to suit their needs, and 
many are free.

For users with physical or motor disabilities: 

Make easily clickable actions—I often see buttons that are right up close 
to some text or the edge of the screen, making them hard to reach. Give 
clickable elements space—same, for example with someone using a 
mobile phone with the thumb: if the space around it is too narrow, it’s hard 
to select an item. Design for keyboard or speech-only use. Mobile First: 
Start your design with the mobile version, and continue with tablet and PC 
versions. Minimize interactions—for example, ask users for their postal 
code only, instead of a complete address. Do you really need to ask for 
complete contact information to subscribe a user to a newsletter? Probably 
not. So, don’t ask users for information you don’t need, and try to minimize 
interactions. It’s been said that a whole site should be accessible in three 
clicks. In this case, it’s particularly important.

For users who are deaf or hard of hearing: 

Use plain language, keep it simple. Use subtitles or provide transcripts for 
videos. Use linear, logical layouts. Break up content with subheadings, 
images and videos which can simplify reading. Let users add a comment 
when booking appointments (for example, to ask for an interpreter). 

For users with anxiety: 

Give users enough time to complete an action—on some government sites 
or other sites where confidential information is submitted, there will often be 
a timer on forms. For example, a user may be required to complete a form 



10

in 20 minutes. Why not make it 60 minutes? Users should have enough 
time to easily complete an action, without the added stress of running out of 
time. 

Explain what will happen after completing an action. When you have a form 
with a “Submit” button, perhaps before this button, add a message that 
says, “You will be redirected to a page with a confirmation that your form 
has been received.” 

Emphasize important information with bold or large characters. Give users 
the support they need to complete an action—for example, if you provide a 
highly complex form on the site, perhaps add a video on how to fill out this 
form. Let users check their answers before they submit a form—when the 
user clicks on “Send,” this could be a pop-up that reads: “Have you double-
checked such and such section?”

Here are a number of references for WCAG 2.0 and government standards 
for website accessibility. If you go to quebec.ca/en/accessibility, you can 
read about the process used by the Quebec government to make their 
website accessible.

a11yqc.org is a Quebec non-profit that helps organizations make their 
websites accessible. ukhomeoffice—this is a series of posters about 
accessibility. The scenarios I mentioned were sourced from this document. 
And then WAI-ARIA 1.0, etc.

That’s all! That’s what I had to say about website accessibility in Quebec.

As I mentioned at the beginning, it isn’t mandatory in Quebec to have an 
accessible website. However, it should be included in your plans when 
creating a site. In fact, it should be one of the first topics of discussion.

Making a website accessible isn’t difficult. It doesn’t require much more 
work than a non-accessible site. It isn’t the part of website development 
that’s the most costly.

So making an accessible site is a must. There are so many advantages to 
having an accessible site, and very, very few disadvantages. We should all 
be making accessible sites, and ensure that everyone can access our site.



11

That’s all. If I’m not mistaken, there will be a discussion planned with 
OBORO. I’ll let them fill you in. 

Thank you very much.

(End of transcription)

Transcription and translation: Marie Lauzon, C. Tran. (Canada)

To cite this conference: Cédric Anderson, “L’accessibilité commence dans la planification : 
comment développer des sites Web accessibles? [Accessibility begins in planning: how to 
develop accessible websites]” (10 June 2020). Conference presented as part of OBORO and 
Spectrum Productions’ Interrogating Access series. Available online: http://www.oboro.net/en/
activity/accessibility-begins-planning-how-develop-accessible-websites



12

www.oboro.net

www.productionsspectrum.com

(End of document)

http://www.oboro.net/fr
https://www.productionsspectrum.com/
http://www.oboro.net/fr
https://www.productionsspectrum.com/
https://conseildesarts.ca/

